Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Exp Pharmacol Physiol ; 51(4): e13852, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38452756

RESUMEN

We tested whether the brain and kidney respond differently to cardiopulmonary bypass (CPB) and to changes in perfusion conditions during CPB. Therefore, in ovine CPB, we assessed regional cerebral oxygen saturation (rSO2 ) by near-infrared spectroscopy and renal cortical and medullary tissue oxygen tension (PO2 ), and, in some protocols, brain tissue PO2 , by phosphorescence lifetime oximetry. During CPB, rSO2 correlated with mixed venous SO2 (r = 0.78) and brain tissue PO2 (r = 0.49) when arterial PO2 was varied. During the first 30 min of CPB, brain tissue PO2 , rSO2 and renal cortical tissue PO2 did not fall, but renal medullary tissue PO2 did. Nevertheless, compared with stable anaesthesia, during stable CPB, rSO2 (66.8 decreasing to 61.3%) and both renal cortical (90.8 decreasing to 43.5 mm Hg) and medullary (44.3 decreasing to 19.2 mm Hg) tissue PO2 were lower. Both rSO2 and renal PO2 increased when pump flow was increased from 60 to 100 mL kg-1 min-1 at a target arterial pressure of 70 mm Hg. They also both increased when pump flow and arterial pressure were increased simultaneously. Neither was significantly altered by partially pulsatile flow. The vasopressor, metaraminol, dose-dependently decreased rSO2 , but increased renal cortical and medullary PO2 . Increasing blood haemoglobin concentration increased rSO2 , but not renal PO2 . We conclude that both the brain and kidney are susceptible to hypoxia during CPB, which can be alleviated by increasing pump flow, even without increasing arterial pressure. However, increasing blood haemoglobin concentration increases brain, but not kidney oxygenation, whereas vasopressor support with metaraminol increases kidney, but not brain oxygenation.


Asunto(s)
Puente Cardiopulmonar , Metaraminol , Ovinos , Animales , Puente Cardiopulmonar/efectos adversos , Oxígeno , Riñón , Vasoconstrictores , Perfusión , Hemoglobinas
2.
Anesth Analg ; 136(4): 802-813, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36928157

RESUMEN

BACKGROUND: Intraoperative inflammation may contribute to postoperative neurocognitive disorders after cardiac surgery requiring cardiopulmonary bypass (CPB). However, the relative contributions of general anesthesia (GA), surgical site injury, and CPB are unclear. METHODS: In adult female sheep, we investigated (1) the temporal profile of proinflammatory and anti-inflammatory cytokines and (2) the extent of microglia activation across major cerebral cortical regions during GA and surgical trauma with and without CPB (N = 5/group). Sheep were studied while conscious, during GA and surgical trauma, with and without CPB. RESULTS: Plasma tumor necrosis factor-alpha (mean [95% confidence intervals], 3.7 [2.5-4.9] vs 1.6 [0.8-2.3] ng/mL; P = .0004) and interleukin-6 levels (4.4 [3.0-5.8] vs 1.6 [0.8-2.3] ng/mL; P = .029) were significantly higher at 1.5 hours, with a further increase in interleukin-6 at 3 hours (7.0 [3.7-10.3] vs 1.8 [1.1-2.6] ng/mL; P < .0001) in animals undergoing CPB compared with those that did not. Although cerebral oxygen saturation was preserved throughout CPB, there was pronounced neuroinflammation as characterized by greater microglia circularity within the frontal cortex of sheep that underwent CPB compared with those that did not (0.34 [0.32-0.37] vs 0.30 [0.29-0.32]; P = .029). Moreover, microglia had fewer branches within the parietal (7.7 [6.5-8.9] vs 10.9 [9.4-12.5]; P = .001) and temporal (7.8 [7.2-8.3] vs 9.9 [8.2-11.7]; P = .020) cortices in sheep that underwent CPB compared with those that did not. CONCLUSIONS: CPB enhanced the release of proinflammatory cytokines beyond that initiated by GA and surgical trauma. This systemic inflammation was associated with microglial activation across 3 major cerebral cortical regions, with a phagocytic microglia phenotype within the frontal cortex, and an inflammatory microglia phenotype within the parietal and temporal cortices. These data provide direct histopathological evidence of CPB-induced neuroinflammation in a large animal model and provide further mechanistic data on how CPB-induced cerebral inflammation might drive postoperative neurocognitive disorders in humans.


Asunto(s)
Puente Cardiopulmonar , Enfermedades Neuroinflamatorias , Animales , Femenino , Puente Cardiopulmonar/efectos adversos , Citocinas , Interleucina-6 , Enfermedades Neuroinflamatorias/etiología , Ovinos , Modelos Animales de Enfermedad
3.
Acta Physiol (Oxf) ; 237(4): e13919, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598336

RESUMEN

AIM: Recruitment of renal functional reserve (RFR) with amino acid loading increases renal blood flow and glomerular filtration rate. However, its effects on renal cortical and medullary oxygenation have not been determined. Accordingly, we tested the effects of recruitment of RFR on renal cortical and medullary oxygenation in non-anesthetized sheep. METHODS: Under general anesthesia, we instrumented 10 sheep to enable subsequent continuous measurements of systemic and renal hemodynamics, renal oxygen delivery and consumption, and cortical and medullary tissue oxygen tension (PO2 ). We then measured the effects of recruitment of RFR with an intravenous infusion of 500 ml of a clinically used amino acid solution (10% Synthamin® 17) in the non-anesthetized state. RESULTS: Compared with baseline, Synthamin® 17 infusion significantly increased renal oxygen delivery mean ± SD maximum increase: (from 0.79 ± 0.17 to 1.06 ± 0.16 ml/kg/min, p < 0.001), renal oxygen consumption (from 0.08 ± 0.01 to 0.15 ± 0.02 ml/kg/min, p < 0.001), and glomerular filtration rate (+45.2 ± 2.7%, p < 0.001). Renal cortical tissue PO2 increased by a maximum of 26.4 ± 1.1% (p = 0.001) and medullary tissue PO2 increased by a maximum of 23.9 ± 2.8% (p = 0. 001). CONCLUSIONS: In non-anesthetized healthy sheep, recruitment of RFR improved renal cortical and medullary oxygenation. These observations might have implications for the use of recruitment of RFR for diagnostic and therapeutic purposes.


Asunto(s)
Lesión Renal Aguda , Oxígeno , Ovinos , Animales , Oxígeno/metabolismo , Riñón/metabolismo , Circulación Renal/fisiología , Hemodinámica , Consumo de Oxígeno
4.
Acta Physiol (Oxf) ; 236(1): e13860, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35862484

RESUMEN

AIM: Cardiac surgery requiring cardiopulmonary bypass (CPB) can result in renal and cerebral injury. Intraoperative tissue hypoxia could contribute to such organ injury. Hypothermia, however, may alleviate organ hypoxia. Therefore, we tested whether moderate hypothermia (30°C) improves cerebral and renal tissue perfusion and oxygenation during ovine CPB. METHODS: Ten sheep were studied while conscious, under stable anesthesia, and during 3 h of CPB. In a randomized within-animal cross-over design, five sheep commenced CPB at a target body temperature of 30°C (moderate hypothermia). After 90 min, the body temperature was increased to 36°C (standard procedure). The remaining five sheep were randomized to the opposite order of target body temperature. RESULTS: Compared with the standard procedure, moderately hypothermic CPB reduced renal oxygen delivery (-34.8% ± 19.6%, P = 0.003) and renal oxygen consumption (-42.7% ± 35.2%, P = 0.04). Nevertheless, moderately hypothermic CPB did not significantly alter either renal cortical or medullary tissue PO2 . Moderately hypothermic CPB also did not significantly alter cerebral perfusion, cerebral tissue PO2 , or cerebral oxygen saturation compared with the standard procedure. Compared with the anesthetized state, the standard procedure reduced renal medullary PO2 (-21.0 ± 13.8 mmHg, P = 0.014) and cerebral oxygen saturation (65.0% ± 7.0% to 55.4% ± 9.6%, P = 0.022) but did not significantly alter either renal cortical or cerebral PO2 . CONCLUSION: Ovine experimental CPB leads to renal medullary tissue hypoxia. Moderately hypothermic CPB did not improve cerebral or renal tissue oxygenation. In the kidney, this is probably because renal tissue oxygen consumption is matched by reduced renal oxygen delivery.


Asunto(s)
Hipotermia Inducida , Hipotermia , Animales , Encéfalo , Puente Cardiopulmonar/efectos adversos , Estudios Cruzados , Hemodinámica , Hipotermia/metabolismo , Hipotermia Inducida/métodos , Hipoxia/metabolismo , Médula Renal/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno , Ovinos
5.
Compr Physiol ; 12(1): 2799-2834, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34964119

RESUMEN

Cardiac surgery-associated acute kidney injury and brain injury remain common despite ongoing efforts to improve both the equipment and procedures deployed during cardiopulmonary bypass (CPB). The pathophysiology of injury of the kidney and brain during CPB is not completely understood. Nevertheless, renal (particularly in the medulla) and cerebral hypoxia and inflammation likely play critical roles. Multiple practical factors, including depth and mode of anesthesia, hemodilution, pump flow, and arterial pressure can influence oxygenation of the brain and kidney during CPB. Critically, these factors may have differential effects on these two vital organs. Systemic inflammatory pathways are activated during CPB through activation of the complement system, coagulation pathways, leukocytes, and the release of inflammatory cytokines. Local inflammation in the brain and kidney may be aggravated by ischemia (and thus hypoxia) and reperfusion (and thus oxidative stress) and activation of resident and infiltrating inflammatory cells. Various strategies, including manipulating perfusion conditions and administration of pharmacotherapies, could potentially be deployed to avoid or attenuate hypoxia and inflammation during CPB. Regarding manipulating perfusion conditions, based on experimental and clinical data, increasing standard pump flow and arterial pressure during CPB appears to offer the best hope to avoid hypoxia and injury, at least in the kidney. Pharmacological approaches, including use of anti-inflammatory agents such as dexmedetomidine and erythropoietin, have shown promise in preclinical models but have not been adequately tested in human trials. However, evidence for beneficial effects of corticosteroids on renal and neurological outcomes is lacking. © 2021 American Physiological Society. Compr Physiol 11:1-36, 2021.


Asunto(s)
Puente Cardiopulmonar , Hipoxia Encefálica , Puente Cardiopulmonar/efectos adversos , Humanos , Hipoxia , Inflamación , Riñón
6.
Am J Physiol Regul Integr Comp Physiol ; 319(6): R690-R702, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33074016

RESUMEN

Glomerular filtration rate (GFR) is acutely increased following a high-protein meal or systemic infusion of amino acids. The mechanisms underlying this renal functional response remain to be fully elucidated. Nevertheless, they appear to culminate in preglomerular vasodilation. Inhibition of the tubuloglomerular feedback signal appears critical. However, nitric oxide, vasodilator prostaglandins, and glucagon also appear important. The increase in GFR during amino acid infusion reveals a "renal reserve," which can be utilized when the physiological demand for single nephron GFR increases. This has led to the concept that in subclinical renal disease, before basal GFR begins to reduce, renal functional reserve can be recruited in a manner that preserves renal function. The extension of this concept is that once a decline in basal GFR can be detected, renal disease is already well progressed. This concept likely applies both in the contexts of chronic kidney disease and acute kidney injury. Critically, its corollary is that deficits in renal functional reserve have the potential to provide early detection of renal dysfunction before basal GFR is reduced. There is growing evidence that the renal response to infusion of amino acids can be used to identify patients at risk of developing either chronic kidney disease or acute kidney injury and as a treatment target for acute kidney injury. However, large multicenter clinical trials are required to test these propositions. A renewed effort to understand the renal physiology underlying the response to amino acid infusion is also warranted.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Aminoácidos/metabolismo , Proteínas en la Dieta/metabolismo , Tasa de Filtración Glomerular , Riñón/irrigación sanguínea , Riñón/metabolismo , Circulación Renal , Insuficiencia Renal Crónica/fisiopatología , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/metabolismo , Adaptación Fisiológica , Aminoácidos/administración & dosificación , Animales , Humanos , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...